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This document contains the sixth assignment and it’s structured as follows: in
the first section we briefly describe how to setup the environment to run the
code that is sent along side this document; from there on each section deals
with a single assignment by first describing some theory and then proceeding to
describe the result obtained from the code written for the assignment.
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0 Environment setup

In order to properly execute the developed code one must satisfy the following
requirements:

(i) Have python with version ≥ 3.7 installed on the system.

(ii) Set the environmental variable PYTHONPATH to point to the folder sent
through the e-mail. For example, if we save and unzip our code in the
directory /home/leo/Downloads, then the PYTHONPATH should have
the following value

PYTHONPATH=/home/leo/Downloads/ITDM_1920_Leonardo_Tamiano

(iii) The following python libraries have to be installed:
matplotlib, sklearn.
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1 Assignment I

1.1 Discrete Random Variables, Information and Entropy

This assignment deals with the definition of the entropy function. Entropy is
a function defined on a pmf (probability-mass-function) and it is mainly used
as a measure of uncertainty.

A given pmf, that is a sequence of probabilities p1, p2, ...pNX that add up to
1 (
∑
pi = 1), with Nx ∈ N, can be used to describe a random variable, which

can be thought of as a random experiment in which the result is not known de-
terministically, and all the possible results have an associated probability, that
is the probability that the random experiment will have exactly that specific
result.

For example the sequence of numbers [0.2, 0.7, 0.1] can be described as the
pmf of a random variable that assumes three distinct values and in which the
first variable has a 20% probability of occuring, the second value 70% has 10%
probability of occuring, and the third value has 10% probability of occuring.

Given a pmf of a random variable X then, we are interested in asking the
following: “how much ’uncertainty’ is there in X?”. That is, how likely am I
to predict the next value X will assume? This is where entropy comes in: the
higher the entropy, the higher the uncertainty, and the less likely I’m to predict
its next value. To actually compute its value, the entropy of a r.v. X with pmf
[p1, p2, ..., pNX ] is defined as

H(X) :=

NX∑
i=1

pi · log2

1

p i

The concept of uncertainty is linked with the concept of information in the
following way: the more uncertain an event is, in probability terms, and the
more information that events gives us, in case it happens. Using this intuition,
given an event A, one can define the self-information of A, denoted by I(A), in
the following way

I(A) := log2

1

p i

It now becomes clear that the entropy H(X) of a random variable X can be
described as follows

H(X) =

NX∑
i=1

pi · log2

1

p i

= E[I(X)]

which can be interpreted as stating that the entropy gives us the average infor-
mation content produced by a given random experiment.
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1.2 Entropy Plots

In the assignment we are asked to compute the graph of the entropy for a
generic binary random variable as a function of p0. The graph is reported below

Figure 1: Graph of entropy for generic binary r.v.

Notice that the obtaiend graph makes sense: the entropy is maximized for the
pmf [0.5, 0.5], that is, when we have maximum uncertainty (all events have
the same probability), while it is minimized for the edge cases [1, 0] and [0, 1],
that is, when we have no uncertainty (either always happens the first event, or
always happens the second event).

We are then asked to do the same, but for a generic ternary binary ran-
dom variable as a function of p0 and p1. The graph computed is reported below
from different perspectives
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Figure 2: Graph of entropy of ternary pmf

Once again, the obtained result is coherent with that we would have expected:
the entropy is maximized for the pmf [1/3, 1/3, 1/3], which is the case of maxi-
mum uncertainty, while it is minimized for the three pmf cases [1, 0, 0], [0, 1, 0]
e [0, 0, 1], that is for all the cases with minimum uncertainty.

6



2 Assignment II

2.1 Multiple Discrete Random Variables

Consider two random experiments. As we have discussed in the previous
chapter, we can model these random experiments with two random variables,
X e Y , each of which is characterized by a specific pmf. Suppose that the
pmf of X is the vector [px1, px2, ..., pxNx ], while the pmf of Y is the vector
[py1, py2, ..., pyNy ]. We can now ask the following question: are these two ran-
dom experiments independent from eachothers, or do they influence eachothers
in some way?

To construct a mathematical model that is able to answer this question,
we first have to introduce some basic building blocks regarding single random
variables. Consider then only X, with its pmf [px1, px2, ..., pxNx ]. We define the
following quantities

• The mean of X is defined as E[X] :=
∑Nx

i=0 pxi · xi and it measures a
possible center value of X.

• The variance of X is defined as V ar[X] := E[(X−E[X])2] and it measures
how much X is spread with respect to the mean E[X].

A low variance means that most likely X will assume a value around the
mean E[X], while high variance means X can assume values even far away
from the mean E[X].

We can now define the concept of co-variance, which is defined as

Cov(X,Y ) := E[(X − E[X]) · (Y − E[Y ])]

and it can be interpreted as a measure of the joint variability of the two random
variables. The lower the covariance, and the lower the two random experiments
are linked together, i.e., the more independent the two experiments are from
eachothers. If Cov(X,Y ) = 0, then the r.v. are said to be independent, and
this fact can be denoted by writing X ⊥⊥ Y .

When we have multiple discrete random variables, we can define their
joint-pmf as follows

Pxy(xi, yj) = P (X = xi, Y = yj)

The joint-pmf can be used to describe the probability of a joint outcome, made
by combining the outcome of the single random experiments. Now, if the two
random variables are independent, that is, if Cov(X,Y ) = 0, then we can
compute their joint pmf as follows

Pxy(xi, yj) = P (X = xi, Y = yj) = P (X = xi) · P (Y = yj) = pxi · pyj
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2.2 Measures of Information

In this assignemtn we were asked to compute some of the most important
measures that can be associated with two discrete random variables and which
are used heavily in the context of data mining problems. It was also asked to
compute a particular class of measures, which are called normalized measures
and which are characterized from the fact that they take assume value in the
range [0, 1].

Let us consider two r.v. X and Y , and let PXY (•, •) be their joint pmf
and PX(•), PY (•) their respective marginal pmfs. The standard measure are
reported below:

(i) Joint entropy: Denoted by H(X,Y ), it is defined as follows

H(X,Y ) =

Nx∑
i=1

Ny∑
j=1

P (xi, yj) · log2

1

PXY (xi, yj)

The joint entropy H(X,Y ) is a measure of the uncertainty associated with
the random variables X and Y . It has the following properties:

• H(X,Y ) = H(Y,X), that is, it is symmetric.

• max{H(X), H(Y )} ≤ H(X,Y ) ≤ H(X) +H(Y ).

• H(X,Y ) = H(X) +H(Y ) ⇐⇒ X ⊥⊥ Y .

In the code (file assignment 2/assignment 2.py), it is computed in the
following way
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(ii) Conditional entropy: Denoted by H(X|Y ) , it is defined as follows

H(X|Y ) :=

Nx∑
i=1

Ny∑
j=1

PXY (xi, yj) · log2

1

P (xi|yi)

The conditional entropy H(X|Y ) is used to measure the uncertainty of
experiment X, knowing the value produced by experiment Y . It has the
following properties:

• H(X|Y ) 6= H(Y |X)

• 0 ≤ H(X|Y ) ≤ H(X)

• H(X|Y ) = H(X) ⇐⇒ X ⊥⊥ Y
• H(X|X) = 0

In the code (file assignment 2/assignment 2.py), it is computed in the
following way
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(iii) Mutual information: Denoted by I(X,Y ), it is defined as follows

I(X,Y ) :=

Nx∑
i=1

Ny∑
j=1

PXY (xi, yj) · log2

PXY (xi, yj)

PX(xi) · PY (yj)

The mutual information I(X,Y ) is used to measure the information that
is common both to X and Y . It has the following properties

• X ⊥⊥ Y =⇒ I(X,Y ) = 0.

• 0 ≤ I(X,Y ) ≤ min{H(X), H(Y )}
• I(X,X) = H(X)

• I(X,Y ) = I(Y,X)

In the code (file assignment 2/assignment 2.py), it is computed in the
following way
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Here are the normalized versions of the previously introduced measures.

(i) Normalized joint entropy: Denotata con µJE(X,Y ), e definita come
segue

µJE(X,Y ) = 1− I(X,Y )

H(X) +H(Y )
∈
[

1

2
, 1

]
(ii) Normalized conditional entropy: Denotata con µCE(X,Y ), e definita

come segue

µCE(X,Y ) =
I(X,Y )

H(X,Y )
∈ [0, 1]

(iii) 1Normalized mutual information Denotata con µMI(X,Y ), e definita
come segue

µMI(X,Y ) :=
I(X,Y )

H(X,Y )
∈ [0, 1]

Finally, here are some other measure that was discussed during lecture.

(i) Entropy correlation coefficient: Denoted by µCC(X,Y ), it is defined
as follows

µCC(X,Y ) :=

√
2 · I(X,Y )

H(X) +H(Y )
∈ [0, 1]

(ii) Symmetric uncertainty: Denoted by µSU (X,Y ), it is a normalized
measure of uncertainty, and its defined as follows

µSU (X,Y ) :=
2 · I(X,Y )

H(X) +H(Y )
∈ [0, 1]

(iii) Variation of information: Denoted by V (X,Y ), it is defined as follows

V (X,Y ) := H(X|Y ) +H(Y |X) ∈ [0, 1]

= H(X,Y )− I(X,Y )

= H(X) +H(Y )− 2 · I(X,Y )

Notice that V (X,Y ) has the following properties

• V (X,Y ) = V (Y,X)

• V (X,X) = 0

• V (X,Y ) ≤ V (X,Z) + V (Z, Y )

This means that V (X,Y ) can be used to measure distances between pmfs,
or, in other words, that V (X,Y ) is a measure of dissimilarity.

1There other other types of normalized mutual information, here we have described only
one.
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(iv) Normalized Variation of Information: Denoted by ηV I(X,Y ), it rep-
resents the normalized version of V (X,Y ) and it is defined as follows

ηV I(X,Y ) =
V (X,Y )

H(X,Y )
∈ [0, 1]
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3 Assignment III

In this assignment we were asked to compare the difference between the entropy
of a discrete random variable given its pmf and the entropy of the estimated pmf
obtained from a set of sample generated through the same pmf used to compute
the first entropy. We were then asked the same thing, but instead of doing it
with pmf (discrete case), we were asked to do it with a pdf (continuous case).

3.1 Differential entropy

So far we have only define the concept of entropy for discrete random variables.
We will now extend it to the case of a continuous random variable, that is a
random variable that has an associated probability density function f(x) such
that f(x) > 0 for all x in the range of the r.v. and

∫∞
−∞ f(x) = 1. The association

between a continuous random variable X and its pdf f(x) is expressed through
the cumulative distribution function, which, for a continuous random variable,
is defined as

Fx(t) := P (X ≤ t) =

∫ t

−∞
f(x)dx

Let X be a continuous random variable with pdf f(x). The differential
entropy of X is defined as

h(x) : =

∫ b

a

fx(x) · log2

1

fx(x)
dx = −

∫ b

a

fx(x) · log2 fx(x)dx

where S = [a, b] ⊂ R is the support set2.

At this point we have to make the following important distinction be-
tween entropy and differential entropy: while entropy, which is defined for
discrete random variables, is an absolute measure of information, that is a
measure that has a meaning in and of itself, the differential entropy, which
is defined for continuous random variables, is only a relative measure of
information whose meaning has to be interpreted with other data. This big
difference comes from the fact that the value of differential entropy depends on
the possible values of the continuous random variable, and not only on their
respective probabilities; the value of entropy, instead, only depends on the pmf,
and not on the particular possible values.

To make this idea more concrete, consider X to be a Gaussian variable
with mean µ and variance σ2, X ∼ N (µ, σ2) its differential entropy can be

2The support set for a continuous r.v. X is a subset obtaiend by taking all elements in the
domain of f(x) who get mapped to positive values.
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computed as follows

h(x) = −
∫ ∞
−∞

fx(x) · log2 (fx(x)) dx

= −
∫ ∞
−∞

fx(x) · log2

(
1√

2πσ2
e−

1
2 ·(

x−µ
σ )

2
)
dx

= − log2

(
1√

2πσ2

)
·
∫ ∞
−∞

f(x)dx+

∫ ∞
−∞

(x− µ)
2

2σ2
f(x)dx

=
1

2
· log2

(
2πσ2

)
+

1

2σ2

∫ ∞
−∞

(x− µ)
2
f(x)dx

=
1

2
· log2

(
2πσ2

)
+

1

2σ2
· σ2

=
1

2
·
(
log2

(
2πσ2

)
+ 1
)

3.2 Estimation using samples

Consider to study a random experiment, represented by the discrete r.v. X
with with fx as the pmf of X. We are interested in knowing what is the pmf
of X, that is, we want to know the probability associated with each possible
outcome of X. How can we do this?

The basic idea is to use a sample, that is a set of outcomes generated
by repeating the experiment X in order to compute an estimation of fx. Notice
that by estimating we are not guaranteed to compute the correct probabilities;
we are only guaranteed that the values we compute will be within a certain
measurable error away from the correct values.

One of the simplest and most effective way to estimate a pmf using a
set of sample is to use compute the frequency of occurence of each different
term in the sample. This is exactly what we did in the assignment: to estimate
the probability of occurence of a certain value v we simply computed

f̂f (v) =
occurences of v in the sample

sample size

The same idea of sampling and estimating can be extended to the continuous
case. This time, however, the techniques that compute the estimations are a bit
more complicated. There are various techniques that allows for pdf estimations,
such as:

• Histogram: Based on discretizing the real line into a specified number
of bins and counting how many samples fall inside each bin.

Formally, we have the following: let h be the bins-width, and let x0 be
the starting position of the first bin, then the histogram density estimator
is defined as
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f̂x(x) :=
1

n · h

n∑
k=1

∞∑
i=−∞

1(x ∈ Bi) · 1(sk ∈ Bi)

= f̂x(x) =
1

n · h

n∑
k=1

I

(
x− sk
h

)
where Bi := [x0 + i · h , x0 + (i+ 1) · h] is the interval associated with
the i-th bin.

Depending on the parameters x0 and h we choose, we can have
different estimations. In particular it is worth noting that a small bin
width suffers from large variance, while a large bin width suffers from
large bias.

• Kernel Function Method: Based on using kernel functions, that is
functions k(x) such that (i)

∫∞
−∞ k(x)dx = 1 and (ii)

∫∞
−∞ x · k(x)dx = 0

to obtain a smoother estimation of the pdf.

Formally, let h be the bandwidth, and let k(·) be a kernel function, then
the kernel density estimator is defined as

f̂x(x) :=
1

n · h

n∑
k=1

k

(
x− sk
h

)
Notice that the estimation obtained this way is smoother than the one
obtained using the histogram method, since f̂x(x) is a continuous function.
It can be proved that as n→∞ the kernel density estimator converges to
the true density.

There are different well known kernel functions. For example, the machine
learning python library Scikit-learn offers the following kernel function to
do pdf estimation

Figure 3: Kernel functions in Scikit-learn
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3.3 Tuning pdf estimation using kernel method

In this paragraph we will consider the impact of bandwith on the difference
between the differential entropy computed by knowing the mean and the
variance of a guassian pdf and the differential entropy computed by estimating
the gaussian pdf using the kernel method on a set of samples generated through
the same gaussian r.v. (same mean and variance as before).

Let X1, ..., Xn be an indipendent sample generated from a gaussian model, i.e.,
Xi ∼ N (µ = 33, σ2 = 52). Let Bopt be the “optimal bandwidth”, computed as
follows

Bopt = 1.06 · σ̂ · n− 1
5

The following graph shows the impact of the bandwidth as stated before. In
particular on the x-axis we have the bandwidth, where on the Y-axis we have
the difference between the two differential entropies.

Figure 4: Bandwidth impact on difference 1

As we can see the choosen bandwidth value is not too far from the most optimal
one in the range [0, 2]. Also, as we move further and further, the difference
between the differential entropies of the theoretical pdf and the estimated pdf
keeps increasing. The following graph however shows that this trend does not
continue monotonically.
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Figure 5: Bandwidth impact on difference 2
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4 Assignment IV

4.1 Datasets

Once we have observed a bunch of data, we can structure it to form what are
called datasets. A dataset can be represented with a data-matrix made up of n
rows and d columns. The d columns are called the features of our dataset, while
the n rows are called the instances of our dataset. Features and instances can
be described as follows:

• A feature represents a particular characteristic about the objects we want
to analyze. Put together, the d features form the characteristics we can
analyze about each object in the world we have observed.

• An instance (i.e. a row in the dataset) represent an object in the real world
that we have observed. Each object is characterized by having particular
values for each feature.

Depending on the nature of the feature, it can represent various kinds of data. In
particular we have can have either numerical data, which is data that rapresents
quantitative measures, like calculating the length of a petal, or categorial data,
which comes from qualitative measures, like observing the color of a pair of eyes.

Different data can be processed in different ways: for example categori-
cal data can be further subdivided into ordinal data and regular data. To
regular data you can only apply the = operator, while to ordinal data you can
also apply the ≤ operator to order the various possible values.

One famous dataset, used extensively as a learning tool, is the iris dataset,
which consists of 50 samples from each of three species of Iris, which is a
type of plant. For each sample the dataset contains the measurements of four
different features: the length and width of sepals and petals, in centimeters.
Here follows the first 10 rows (instances) of the iris dataset.

(a) Iris dataset (b) Iris setosa
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4.2 Data mining

Once we have a dataset, we are interested in turning this data into information
which can then be used to make plans and decisions. To do this we have to
process and fliter the data by removing the parts of it which are of no use to
our particular objective and by making the useful parts stand out. This task
of processing and filtering the data is called data mining.

In a data mining we may, or may not do the following tasks in order to
pre-process the data for later processing. The particular tasks done depend on
the particular task we want to solve.

(i) Data transformation,

Consist of changing the type of certain data present in our dataset, as
well as re-organizing the dataset in a different way as to facilitate the
later processing.

(ii) Data normalization,

Consists of changing the range of values of certain features. For example,
in case of numerical data, by normalizing we can have that all features
range in the interval [0, 1] ∈ R.

The impact that this normalization step has depends on the initial ranges
of the various features.

(iii) Management of outlier and missing value,

Consists of discovering and choosing how to dela with outliers and missing
value. An outlier is considered to be an observation with very low prob-
ability. To discover outliers it is therefore necessary to define a threshold
value.

If the task we want to solve is not the discovering of outlier values, like
for example in alarm systems, we may want to discard outliers to clean
our dataset.

As for missing values, we can deal with them in two different ways: ei-
ther discard the entire row, or put the sample mean (with respect to the
dataset) of the respective feature instead of the missing value.

(iv) Data discretization

Consists of turning continuous numerical data (formalized using continu-
ous r.v.) into discrete numerical data (formalized using discrete r.v.) in
order to use information theory tools such as entropy, mutual information,
and so on.

This step can also be considered as a noise reduction step in the pre-
processing chain.
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(v) Dimensionality reduction

Consists of reducing the number of rows and columns of our dataset.

There are various tecniques for doing dimensionality reduction such as
SVD (Singular Value Decomposition) and PCA (Principal Component
Analysis).

(vi) Feature selection

Consists of discarding features which are not useful to the processing
phase. The significance of a given feature is computed according to a
particular metric.

For example, we might use the mutual information to compute the cor-
relation between the various features, and discard a feature if it is highly
correlated with some other in the dataset.

4.3 Mutual information in iris dataset

In the assignment we were asked to compute the mutual information between
the features of the iris dataset. To do so i discretized the dataset by multiplying
each entry by 10, estimated the various pdfs, joint and marginals, and went
on to compute the mutual information between each couple of features. The
results are reported in the table below.

Feature 1
(sepal-length)

Feature 2
(sepal-width)

Feature 3
(petal-length)

Feature 4
(petal-width)

Feature 1 4.822 2.089 3.003 2.240
Feature 2 4.822 2.227 1.676
Feature 3 5.034 2.695
Feature 4 4.050

Notice that in the table only the upper diagonal portion of the table is filled,
since the mutual information is symmetric, i.e. I(X,Y ) = I(Y,X).
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5 Assignment V

In this assignment we were asked to implement three different versions of a
Bayes classifier in order to classify iris plants using a well known dataset. We
were then asked to compute the accuracy

5.1 Classification

Classification is a typical problem in the field of machine learning. It can
be describe informally as follows: we have a dataset in which to every row
(instance) is assigned a particular value, called the class of the instance, taken
from a well-defined set of class-values. The classification problem consists of
building an algorithm that is able to assign, to every possible instance, even
those outside of our dataset, a particular class label, such that the class label
assigned is the one that describes optimally the given instance.

A more formal definition of the problem of classification would be the following:
Given a fixed set of classes C = {c1, c2, ..., cJ}, a dataset, represented by an n×d
matrix D, where n is the number of instances, and d is the number of features
of the dataset, and a class column vector C which assigns to every row in the
dataset a class value taken from C, we want to construct a function γ that maps
instances of features, even those not contained in the original dataset, to classes.

There are various approaches to solve this problem. In particular we
have seen the following:

• Decision trees A decision tree is a finite, oriented tree, with a root. A
decision tree takes in input the instance to classify and uses the values of
the intermediate nodes, called the splitting features, with certain spltiting
criterions to traverse the tree and arrive at one of the leafes, which repre-
sent class labels. The leaf reached is then the class label assigned to the
instance given in input.

One type of decision tree classifier is named ID3 (Iterative Dichotomiser).
This decision tree is built by computing the mutual information between
the various features Fj and the class set C. Originally ID3 could only
be applied to discrete data, in which the splitting criterion was easily to
decide: branch for every distinct value; in the continuous case choosing
how to split the dataset to construct the tree may be time consuming.

• Bayes Classifiers Based on the well-known Bayes’ theorem, which states
that, if A and B are events in a given probability space, then

P (A|B) =
P (B|A) · P (A)

P (B)

Bayes classifiers will be discussed in more detail in the following section.
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5.2 Bayes Classifiers

Let x̄ be an instance we want to classify. Which class should we assign to
instance x̄? We would like to assign to x̄ the class that maximizes the probability
P (ct|x̄), that is the probability that, given instance x̄, the class of x̄ is exactly
ct. Formally we have

c(x̄) := argmax
c∈C

P (ct|x̄)

All Bayes classifiers then make use of the following observation: we know from
probability theory that

P (ct|x̄) =
P (x̄|ct) · P (ct)

P (x̄)

Consider now how the formula changes as the class value changes: if instead
of ct we put a different class value, like cl, only the nominator of the right-
hand side changes, while the denominator stays the same. This is true for all
class values. This means that, if we are interested only in the value ct which
maximizes the formula, we do not have to compute the denomintor, since it has
the same values for all class values. This, then, allows us to make the following
big leap

c(x̄) = argmax
c∈C

P (ct|x̄) = argmax
c∈C

P (x̄|ct) · P (ct)

To compute this we then have to estimate, for each class ct, the probabilities
P (x̄|ct) and P (ct). The estimation for P (ct) is simply obtained by counting in
the original dataset how many instances are assigned to class ct and diving the
obtained number by the number of instances. In formula we obtain:

ˆP (ct) =
# of instances in dataset assigned to class ct

# of instances in dataset

The way in which we estimate the probability P (x̄|ct) depends on the particular
assumptions we make and defines a particular type of Bayes classifier. Here we
list a few well known Bayes classifier models:

• Bayes classifier: In this model we do not make any simplifying assump-
tions. To estimate P (x̄|ct) we can either compute the frequency of in-
stances like x̄ which get assigned class ct in the dataset, if our data is
discrete, or we can use the multivariate kernel method if our data is con-
tinuous.

• Näıve Bayes classifier: In this model we assume that the features that
characterize the instances are independent from eachothers conditional on
the class ct . This allows us to make the following simplification:

P (x̄|ct) =

d∏
i=1

P (xi|ct)
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We can then estimate the various probabilities P (xi|ct) by either comput-
ing the frequence of occurence of the value xi in the i-th feature which
gets assigned to class ct, if our data is discrete, or we can use the kernel
method on the values of the i-th feature which get mapped to class ct.

• Gaussian näıve Bayes Classifier: In this model we make the same
independent assumption as before. This time however we assume that
the features are gaussian distributed. That is, the j-th feature follows a
normal distribution, Fj ∼ N (µj , σ

2
j ).

In this model we can estimate the various probabilities P (xi|ct) by esti-
mating the mean µj and the variance σ2

j of each feature Fj depending on
the class ct and then using the gaussian pdf as follows

P̂ (xi|ct) =
1√

2πσ̂2
j

· e−
1
2

(
xi−µ̄j
σ̄j

)2

where µ̂j and σ̂2
j are the estimated mean and variance.

5.3 Computed accuracy

To measure the performance of a classification algorithm we can proceed as
follows: first we split the original dataset into two smaller datasets, one called
the training set, and the other called the test set. Then we use the training set
to, as the name suggests, train our classification algorithm, i.e. to estimate the
various probabilities involved in our statistical model. Finally, we use the model
we trained on the test set, and we compare the result obtained with the correct
ones.
One of the most important measures in this case is called accuracy, and it is
computed as follows: let Nc be the number of instances of the test set which
were correctly identified using our classification algorithm, and let N be the
total number of instances of the test set. Then the accuracy obtained is:

accuracy :=
Nc

N

Finally follows the results obtained by the various classifiers implemented for
assignment V.

Classifier model Accuracy
Bayes Classifier 0.9333
Näıve Bayes classifier 0.9466
Gaussian näıve Bayes Classifier 0.9200
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